Treuil

Tension de la corde et accélération angulaire
mardi 29 novembre 2005
par  Bernard Vuilleumier
popularité : 2%

Un treuil animé d’un rotation uniforme soulève une masse. Si on lâche la manivelle, le cylindre sur lequel est enroulé la corde accélère et la tension dans la corde diminue.

Exercice

Un treuil est constitué d’un cylindre homogène de masse M=20 kg, de rayon r=10 cm et d’axe Z. Une corde enroulée sur le treuil soutient un solide S de masse m=10 kg. Les masses de la corde et de la manivelle ainsi que toutes les résistances passives (frottements et résistance de l’air) sont négligeables. Calculez :
a) la tension T de la corde en situation d’équilibre ou de rotation uniforme ;
b) l’accélération angulaire $\alpha$ du treuil si on lâche la manivelle ;
c) l’accélération linéaire a du solide S dans sa chute lorsqu’on lâche la manivelle.

Corrigé

a) En situation d’équilibre et en rotation uniforme l’accélération est nulle. La somme des forces qui s’exercent sur le solide S est donc égale à 0. Nous pouvons écrire $\vec P+\vec T=\vec 0$, où $\vec P$ est le poids du solide et $\vec T$ la tension de la corde. En grandeur, la tension est alors égale au poids.

T = mg

- Rép. 100 N.

b) La relation fondamentale de la dynamique pour le cylindre du treuil en rotation s’écrit $M = I\alpha$ où M est la somme algébrique des moments par rapport à l’axe de rotation des forces extérieures appliquées au cylindre, I le moment d’inertie du cylindre et $\alpha$ son accélération angulaire. Le seul moment agissant sur le cylindre est celui de la tension $\vec T$ de la corde : $rT = I\alpha$ d’où $T =\frac{I\alpha}{r}$. D’autre part nous pouvons écrire, en considérant les forces qui agissent sur la masse m,
$\vec P+\vec T=m\vec a$, soit, en grandeur, T = m(g - a). En égalant les deux valeurs de T et en remplaçant l’accélération linéaire a par $\alpha r$, nous obtenons :

$\frac{I \alpha}{r}=m(g-\alpha r)$

puis en mettant $\alpha$ en évidence, $\alpha (mr+\frac{I}{r})= mg$ et finalement :

$\alpha = \frac{mg}{mr+\frac{I}{r}}$

- Rép. 50 rad/s2.

c) L’accélération linéaire a du solide S est la même que l’accélération tangentielle de la corde. Elle vaut :

$a = \alpha r$

- Rép. 5 m/s2.