Warning: Undefined array key "HTTP_REFERER" in /home/clients/5f3066c66025ccf8146e6c2cce553de9/web/spip/index.php on line 30

Deprecated: strtolower(): Passing null to parameter #1 ($string) of type string is deprecated in /home/clients/5f3066c66025ccf8146e6c2cce553de9/web/spip/index.php on line 30
e/m Rapport charge sur masse de l'électron : questions - [Apprendre en ligne]
Laboratoire de physique
e/m Rapport charge sur masse de l’électron : questions
Préparation de l’expérience

Questions sur le rapport charge sur masse (e/m) de l’électron.

Article mis en ligne le 12 novembre 2007
dernière modification le 3 décembre 2014

par bernard.vuilleumier

Consultations préalables
 J.-A. Monard, Électricité, Chap. 17, $\S$ 122, 123, 124, 125, 126, 127, 128.
 Protocole de l’expérience
 Bobines de Helmholtz
 Mouvement d’une particule chargée dans un champ électrique et/ou magnétique


Questions

 Question 1 (2 points)
Comment s’appelle la force à laquelle une particule pénétrant dans un champ magnétique est soumise ? De quoi cette force dépend-elle ?

 Question 2 (2 points)
Comment obtient-on la direction, le sens et la grandeur de cette force ?

 Question 3 (2 points)
Exprimez l’énergie cinétique acquise par une particule de masse m et de charge e accélérée par une tension U.

 Question 4 (4 points)
La particule accélérée pénètre dans un champ magnétique. Établissez une relation entre le rayon de courbure r de la trajectoire décrite par la particule, sa masse m, sa charge e, le champ magnétique B et la tension d’accélération U.

 Question 5 (5 points)
Remplacez, dans la relation obtenue, le champ B par l’expression donnant le champ magnétique au centre du dispositif de Helmholtz et écrivez le résultat sous la forme :

$r=f(\frac{1}{I})=k\frac{1}{I}$

r est le rayon de courbure de la trajectoire, I le courant parcourant les bobines de Helmholtz et k une constante faisant intervenir la masse m et la charge e de la particule.


Autres questions sur l’électromagnétisme
 Bobines de Helmholtz
 Champ magnétique d’un solénoïde
 Charge et décharge d’un condensateur
 Force de Laplace
 Résistivité

Sujets liés (from Wolfram Demonstrations Project)
 Charged Particle in Uniform Electric and Magnetic Fields
 Energy Density of a Particle Moving at Uniform Speed


Wolfram Demonstrations Project : mode d’emploi