Bandeau
Apprendre en ligne
Slogan du site

Ressources pour les enseignants et les élèves du secondaire II.

Journées hors-cadre 2009-2010
Toulouse, relation de voyage
Visite de la Cité de l’espace et d’Airbus

Voyage à Toulouse, visites et découvertes.

Article mis en ligne le 12 mai 2010
par Josué Guerra par

Suivez le récit des aventures de petits physiciens en "herbe" à Toulouse. Vous découvrirez comment ils se sont battus face au destin dans un Univers hostile au sud de la France...


Dimanche 28 avril :

Après une heure de vol, nous sommes enfin arrivés à Toulouse à 13h30. Il nous a fallu encore attendre plus d’une heure et demie à l’aéroport pour prendre un bus nous amenant à l’hôtel des Ambassadeurs.
Nous nous sommes ensuite répartis les chambres et nous nous sommes installés.
L’après-midi, nous avons visité un festival consacré aux jeux. Puis, nous avons eu l’autorisation de sortir le soir pour aller explorer Toulouse et aller manger.

Lundi 29 avril :

Nous nous sommes levés assez tôt et après avoir pris un bon petit déjeuner, nous nous sommes mis en route pour aller visiter la Cité de l’Espace. Nous avons reçu un ticket qui nous permettait d’entrer et de sortir à notre aise et avons commencé la visite en fin de matinée.
Premièrement, nous avons visité le rez-de-chaussée de la cité. Dans cet étage, il y avait beaucoup de choses qui faisaient allusion à la force de gravitation qu’exercent généralement les planètes sur d’autres objets. Nous pouvions faire quelques expériences qui nous démontraient cela, comme par exemple une sorte d’entonnoir dans lequel nous laissions rouler des pièces qui en fonction de leur masse tournaient longtemps ou au contraire ne tournaient que très peu de temps dans l’entonnoir.
Ensuite, nous avons visité le premier étage. Cet étage nous montrait surtout comment et avec quoi les astronautes se lancent à la conquête de la Voie Lactée, notre galaxie, notamment grâce à la naissance de la fusée. Nous pouvions aussi utiliser des simulateurs qui nous montraient par exemple comment se déplace un astronaute dans l’espace ou bien comment et de quoi est constitué le sol de la planète Mars.
Pour finir la visite du bâtiment, nous avons visité le deuxième et dernier étage. Nous avons pu y découvrir des films qui traitaient pour la plupart de la théorie de la relativité d’Albert Einstein. Il y avait aussi des petites installations qui recréaient les constellations les plus connues.
Puis, toujours à la Cité de l’Espace, nous sommes allés manger et avons repris notre visite. Nous avons regardé deux films. Le premier était projeté en 3D et racontait comment nous sommes parvenus à améliorer notre vision de l’Univers grâce aux perfectionnements apportés à plusieurs reprises sur le télescope spatial Hubble. Dans le film, on accompagne justement la dernière équipe d’astronautes à avoir effectué des réglages sur celui-ci.
Pour ce qui est du deuxième film, je sais qu’il s’agit d’un film décrivant notre Univers. Mais pour être sincère, je ne l’ai presque pas vu car je tombais de fatigue ce jour là, il faisait terriblement chaud.
Le soir venu, nous sommes de nouveau allés manger tous ensemble dans un restaurant toulousain pour y goûter des spécialités locales.

Mardi 30 avril :

Nous avons visité un peu la ville de Toulouse. Nous sommes allés entre autres à la place Capitole ou encore à la Salle des mariages et avons pu « admirer » de magnifiques statues et de très beaux tableaux. Nous sommes aussi allés dans le Couvent des Jacobins. Puis, les professeurs nous ont libérés pour le reste de la journée.

Mercredi 31 avril :

Ce jour là, les professeurs nous ont préparé une matinée « spécial physique », autrement dit : un cours de rattrapage.
En effet, nous devions nous remettre dans le bain.
Nous avons donc fait des groupes de cinq ou six élèves de deuxième et de troisième année mélangés. L’étape suivante consistait à résoudre quatre problèmes en rapport avec les lois de Newton, des exercices de dynamique que nous avons bien entendu résolus haut la main. ^^
Cela étant fait, nous sommes allés nous préparer pour la deuxième visite : les ateliers d’Airbus.
Nous avons pris deux bus. Après quoi nous sommes arrivés en plein milieu de nulle part et avons dû parcourir une distance non – négligeable sous un soleil de plomb (la preuve en est que certains d’entre nous avons enlevés nos t-shirts tellement la chaleur était insupportable).
Une fois arrivés à destination, nous avons reçu une carte de visiteurs qui nous permettait d’avoir accès au le site.
Nous avons commencé par visiter le Concorde, premier avion de ligne supersonique pouvant dépasser Mach 2. Grâce à cet avion, il était possible d’effectuer le trajet Paris – New York aller-retour en une journée ! Malheureusement, nous ne pouvons plus faire cela car le Concorde n’a plus l’autorisation de voler depuis 2003 pour diverses raisons dont des raisons écologique.
La guide nous a ensuite montré un film dans lequel nous pouvions voir un vol test du Concorde.
Après cela, nous nous sommes rendus dans le bâtiment dans lequel l’assemblage des A380 a lieu.
Les pièces de l’Airbus A380 proviennent principalement de l’Angleterre, l’Allemagne, l’Espagne et la France elle-même.
Les avions sont assemblés à Toulouse dans quatre salles différentes et sont finalement exportés dans les pays les ayant commandés.
La visite terminée, nous sommes tous allés au KFC.
Le soir venu, nous sommes sortis une dernière fois car c’était le dernier soir de notre séjour à Toulouse.

Jeudi 1 mai :

Jeudi matin, nous avons fait nos bagages et avons rendu les clés de nos chambres. Nous nous sommes ensuite rendus à l’aéroport en bus. Finalement, nous avons acheté quelque chose à grignoter en attendant l’avion de retour.

Conclusion :

Tout au long de ce voyage, nous nous sommes bien amusés.
Nous avons appris pas mal de choses grâce aux visites. Cependant, j’ai trouvé dommage que l’on n’ai pas pu prendre de photos chez Airbus.
Pour tout le reste, il n’y a rien à redire. La nourriture était bonne et les horaires de travail assez flexibles. Je dirais que ce voyage a été un succès !

Dynamique. Oscillateur harmonique
Forces exercées sur une masse accrochée à un ressort
Choix de l’origine de l’axe qui repère la position de la masse

Modèles Stella simulant le mouvement d’une masse accrochée à un ressort (oscillateur harmonique) dans deux systèmes de référence distincts.

Article mis en ligne le 30 septembre 2006
par bernard.vuilleumier par

Une masse accrochée à un ressort constitue un oscillateur harmonique. Dans ce système, la masse est soumise à deux forces : son poids et la force de rappel due au ressort. Par un choix judicieux de l’origine de l’axe qui repère la position de la masse, il est possible de « neutraliser » la contribution du poids. L’examen du système peut alors se faire en considérant uniquement la force de rappel exercée sur la masse par le ressort lorsqu’elle s’écarte de sa position d’équilibre.


Considérons un ressort accroché au plafond. Suspendons une masse à l’extrémité libre du ressort et lâchons-la. Nous avons un oscillateur harmonique.

Oscillateur harmonique
Animation réalisée avec Mathematica et tirée de VisualDSolve de Stan Wagon.

Repérons la position de la masse depuis deux systèmes de référence.

  1. l’origine 0 du premier système coïncide avec l’extrémité libre du ressort « à vide » et l’axe Oy est vertical orienté vers le haut.
  2. l’origine 0 de second système coïncide avec la position d’équilibre de la masse accrochée au ressort et l’axe Oh est vertical orienté vers le haut.

Repérage de la masse depuis deux systèmes de référence
À gauche, l’origine de l’axe coïncide avec l’extrémité libre du ressort. À droite, l’origine de l’axe coïncide avec la position d’équilibre de la masse.

Accélération de la masse

  1. Dans le premier système, si on accroche la masse au ressort, son accélération vaudra -g-ky/m
  2. Dans le deuxième, son accélération est donnée par -kh/m.

En faisant coïncider l’origine de l’axe qui repère la masse avec sa position d’équilibre, on annule les forces qui agissent sur elle lorsqu’elle se trouve dans cette position (le poids est compensé par la force de rappel). La force exercée sur la masse pour n’importe quelle autre position ne dépend alors plus que de l’écart par rapport à cette position d’équilibre.

Premier modèle

L’origine de l’axe qui repère la position de la masse oscillante coïncide avec l’extrémité libre du ressort.

Modèle simulant le mouvement d’un oscillateur harmonique

Équations du modèle

INIT v = 0
a = -g-k*y/m
INIT y = 0
flux_y = v
Ecin = m*v^2/2
Eelastique = k*y^2/2
Emec = Ecin+Eelastique+Epot
Epot = m*g*y
g = 9.8
k = 100
m = 0.5

Résultats

Énergies mises en jeu lors de l’oscillation de la masse
La somme de l’énergie cinétique, élastique et potentielle est constante et correspond à l’énergie mécanique du système qui vaut ici 0 J.

Énergies mises en jeu lors de l’oscillation de la masse : la somme de l’énergie cinétique, élastique et potentielle est constante et correspond à l’énergie mécanique du système

 


Deuxième modèle

L’origine de l’axe qui repère la position de la masse oscillante coïncide avec sa position d’équilibre.

Énergies mises en jeu lors de l’oscillation de la masse
La somme de l’énergie cinétique de la masse et élastique du ressort est constante et est égale à l’énergie mécanique du système qui diffère de celle obtenue dans le premier modèle.

Équations du modèle

INIT v = 0
a = -k*h/m
INIT h = 9.81*m/k
flux_v = v
Ecin = m*v^2/2
Eelastique = k*h^2/2
Emec = Ecin+Eelastique
k = 100
m = 0.5

Résultats

Énergies mises en jeu lors de l’oscillation de la masse
La somme de l’énergie cinétique de la masse et élastique du ressort est constante et est égale à l’énergie mécanique du système qui diffère de celle obtenue dans le premier modèle.

Énergies mises en jeu lors de l’oscillation de la masse : la somme de l’énergie cinétique de la masse et élastique du ressort est constante et est égale à l’énergie mécanique du système qui diffère de celle obtenue dans le premier modèle.

Pour les deux modèles

Run Spec: 
From: 0 
To: 1 
DT: 0.01 
Integration Method: Runge-Kutta 4.

Conclusion

Les deux modèles permettent de vérifier que l’énergie mécanique du système est conservée. Le deuxième modèle, en faisant coïncider l’origine de l’axe avec la position d’équilibre de la masse permet de « neutraliser » la contribution du poids et simplifie le problème. La seule force qui agit alors sur la masse est une force de rappel proportionnelle à l’écart par rapport à cette position d’équilibre.

Voir aussi
 L’oscillateur harmonique
 Rotation et oscillation
 Oscillateur harmonique
 Le saut à l’élastique
 Saut à l’élastique, cas général
 Circuit électrique et oscillateur harmonique
 Oscillations
 Exercices sur les oscillations harmoniques